
Why A Bayesian Be?

Andrew R. Willan, PhD

Senior Scientist Emeritus
SickKids Research Institute, Toronto

Professor of Biostatistics
Dalla Lana School of Public Health
University of Toronto

“Ask your doctor if taking a pill to solve all your problems is right for you.”
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True treatment difference ()

Sample Size and Power Curves

 SCID smallest clinical impor tant difference

0

Sample Size and Power Curves

Power curves will pass through (0,) because we’re testing the hypothesis

H:  = 0 vs. A:  > 0 at the level 

(i.e. probability of reject H when it’s true is )

Steepness of the power curve will increase with sample size



Problems with Standard Approach

 is almost always set to 0.05 (occasionally 0.01)

Which means that “all” trials have the same probability of falsely 
rejecting the null hypothesis and adopting the new intervention
when it is no better than the standard intervention.

Example: Argon green laser (Standard) vs. krypton red laser (Treatment)
for age-related macular degeneration. Number of letters read.

No difference to the patient, except the colour of the light. No difference
in cost.

Could argue that if there’s no difference in patient outcomes
(i.e. null hypothesis is true), there is no real issue with adopting the
new intervention

Perhaps  should be set to 0.5

Problems with Standard Approach

 is almost always set to 0.05 (occasionally 0.01)

Example: Trial of planned labour (Standard) vs. cesarean section 
(Treatment) for pregnant women in the breech position.
Neonatal death or disability.

Huge difference to the patient. Potential difference in cost.

If there is no benefit in patient outcomes (i.e. null hypothesis is true),
would really like to avoid adopting cesarean section 

Perhaps  should be set to 0.001 or lower



Problems with Standard Approach

1 –  is almost always set to 0.8 (occasionally 0.9)

Therefore, there is a 20% probability failing to reject the null 
hypothesis even though the true treatment difference is clinically 
important.

But also, the probability of rejecting the null hypothesis is greater 
than 50% for a range of values for the true treatment difference that 
is less than the smallest clinical important, namely 0.5 to SCID

In practice the stated SCID used is often back solved after 
determining the sample size based feasibility and budget constraints, 
and is almost always larger than the true SCID.

Problems with Standard Approach

Basic problem is the failure to quantify and assign utilities/disutilites

to patient outcomes and interventions

Interventions: green vs red light

major surgery vs planned vaginal birth

Outcomes: number of letters read from eye chart

neonatal death and disability



Three Main Reasons to Prefer Bayesian Approach

Permits simple, intuitive and relevant statements of statistical inference 
regarding the parameters of interest directly 

(Bayes Lite) 
 
 
 
Provides a transparent framework for combining new information with 
current knowledge 

(Bayes) 
 
 
 
Facilitates decision theory (value of information methods) for optimal 
decision-making and research design 

(Full-on Bayes) 

Simple, Intuitive, Relevant Statements
of Statistical Inference

Frequentist definition of probability of an event: the limiting relative 

frequency of its occurrence in a series of repeated observations of a 

chance outcome in which it could occur. 

 

For the Bayesian probability is the (subjective) expression of the 

uncertainty or “degree of belief” regarding the unknown. 



Frequentist Statistical Inference

Frequentist definition of probability leads to the use of test of hypothesis, 

with associated p-values and confidence intervals, to characterize 

uncertainty regarding model parameters. 

 

Working hypothesis 

Null hypothesis (i.e. working hypothesis is not true) 

If observations refute null hypothesis, the working hypothesis is “proven” 

 

In empirical research, “refute” means observations are “unlikely” if null 

hypothesis is true.  “Unlikely” usually means a probability less than 5% 

Bayesian Statistical Inference

Bayesian definition of probability leads to the use of probability 

statements regarding model parameters to characterize the uncertainty. 

 

Bayesian inference provides probability statements about the truth, 

given the data.  Frequentist inference provides probability statements 

about the data, given the truth. 

 

Consider a clinical trial comparing T and S with respect to the relative 

risk for a bad outcome, where the frequentist’s p-value is 0.035 and 

where a one-sided test of hypothesis is applied at the 5% level 



The frequentist statement of inference is: 

“We can reject the null hypothesis that the relative risk is equal to or greater than one 

(i.e. T is equivalent or inferior to S) in favour of the alternative (working) hypothesis 

that the relative risk is less than one (i.e. T is superior to S) with a probability of being 

wrong is less than 5%. 

 

This means that if the null hypothesis is true (i.e. T is equivalent or inferior to S) and 

the trial was repeated many, many times, the proportion of times that the results of 

these replications will be at least as inconsistent with the null hypothesis as the data 

from the trial under consideration is less than 5%.” 

Simple, Intuitive, Relevant Statements
of Statistical Inference

This is not a statement about falsely rejecting the null hypothesis for this 

particular trial, but rather a statement about the proportion of many, many 

null hypothesis that would be falsely rejecting using the same criterion. 

 

The Bayesian statement of inference is: 

“The probability that the relative risk is less than one (i.e. T is superior to 

S) is 96.5%.” 

Simple, Intuitive, Relevant Statements
of Statistical Inference



Simple, Intuitive, Relevant Statements
of Statistical Inference

Frequentist 95% confidence interval:

“The 95% confidence interval for the relative risk is (0.493, 0.917), 

meaning that if the trial was conducted many, many times, then (in the 

limit) the proportion of the confidence intervals from these replications 

that include the true relative risk is 95%.” The inference does not say 

anything about the specific confidence interval based on the data from 

this trial, and whether or not it includes the true value of relative risk. 

What you can say, using the data from this trial, is that the hypothesis

H: RR = x cannot be rejected at the two-sided, 5% level for any value of

x in the interval (0.493, 0.917).

Simple, Intuitive, Relevant Statements
of Statistical Inference

On the other hand, inference based on a Bayesian credible 

interval with the same limits is stated as, “there is a 95% 

probability that the relative risk lies in the interval (0.493, 0.917).”



Framework for Combining New Information (Data)
with Current Knowledge

Bayes Theorem:  


  
p y

p y p
p y

( | )
( | ) ( )

( )
 

 are the population parameters 

p( )  expresses the current knowledge as a probability distribution function 

(pdf) for the model parameters, referred to as the prior distribution 

y is the new data 

p y( | ) is the likelihood for the data, i.e. the pdf for the data, given  

p y( | ) is the posterior pdf for  given the data 

p y( ) is a normalizing factor to ensure that p y( | ) integrates to 1 

 

Framework for Combining New Information (Data)
with Current Knowledge

Bayes Theorem:  


  
p y

p y p
p y

( | )
( | ) ( )

( )
 

 
The inference is made with p y( | )  is conditional on of y (the data) 
and p( ) (prior pdf for ). 
 
Therefore, the inference is conditional on the data and opinions that were 
used to form p( ). 
 
If an uninformative prior is used for p( ) then it is implicit that the inference 
is conditional only on y. 
 
 



Bayes Theorem for Binomial Probability

Let  be the probability that a patient experiences failure 

If we have no knowledge of , then     ( ) 1 for 0 1and 0, othewisep  

 

 

 

 

 

That is,   (1,1)Beta    Uninformative Prior 
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Bayes Theorem for Binomial Probability
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V       prior, i.e. before any data/opinions 

 

In a sample of n patients, suppose r failures are observed 
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Early (T) vs. Late (S) External Cephalic Version for Breech

Pregnant women in the breech position randomized between 

early (33-36 weeks) vs. late (37+ weeks) external cephalic 

version to manipulate the fetus into the vertex position and avoid 

a caesarean delivery,

Hutton et al. BJOG 2011; 118(5):564-577.

Late (S): n = 767; non-caesarean delivery = 337 (43.9%)

Early (T): n = 765; non-caesarean delivery = 367 (48.0%)

Two-sided p-value = 0.12

Conclusion: Early external cephalic version does not increase 

the probability of a non-caesarean delivery

Frequentist Approach

Early (T) vs. Late (S) External Cephalic Version for Breech

Pilot trial

Hutton et al. AJOG 2003; 189(1):245-254.

Late (S): n = 116; non-caesarean delivery = 33 (28.4%)

Early (T): n = 116; non-caesarean delivery = 41 (35.3%)

Bayesian Approach

Prior for 
Pilot

Posterior to Pilot
Prior for Trial

Posterior to Trial

Prob. of non-CD, 
Late

Beta(1,1)
Beta(1+33,1+[116-33])

= Beta(34,84)
Beta(34+337,84+[767-337])

= Beta(371,514)

Prob. of non-CD, 
Early

Beta(1,1)
Beta(1+41,1+[116-41])

= Beta(42,76)
Beta(42+367,76+[765-367])

= Beta(409,474)



Bayesian Approach

Prob. non-CD Distribution Mean Variance

0.4192 0.0002748

0.4622 0.0002813

Approx. Normal 0.04399 0.0005561

L
(371,514)Beta

E (409,474)Beta

  E L

sumprob. difference

Early:

Early (T) vs. Late (S) External Cephalic Version for Breech

Late:

 ( , )X Beta a b 


( )
a

E X
a b


  2

( )
( ) ( 1)

ab
V X

a b a b

difference

Bayesian Approach

Probability distribution function for               (prob. difference)  E L

Early (T) vs. Late (S) External Cephalic Version for Breech

0.97

 Late Better  Early Better

0.03

0.044
0

The probability that Early ECV increases the chance of a non-CD is 97%



Bayesian Approach

Cumulative distribution function for                 (prob. difference)  E L

Early (T) vs. Late (S) External Cephalic Version for Breech

   E L XPr( )

0.03

 Late Better  Early Better

X

0.94

0.08 (SCID)
0

0.5

0.044

Of the 125 patient randomized to active, 101 achieved the threshold 

for cure (80.8%), compared to 73 of the 125 patients randomized to 

control (58.4%); 2p=0.0001.

Based on these results the authors rejected the null hypothesis using 

a two-sided test at the 0.05 level.

Ben Salah et al. NEJM 2013; 368(6):524-532

Conclusion: “This trial provides evidence of the efficacy of 

paromomycin–gentamicin (with a 5% probability of error).”

Frequentist Approach

Topical Paromomycin and Gentamicin 
for Cutaneous Leishmaniasis



Topical Paromomycin and Gentamicin 
for Cutaneous Leishmaniasis

Pilot trial

Ben Salah et al. PLoS Negl. Trop. Dis. 2009; 3(5), e432.

Placebo (P): n = 42; cure = 30 (71.4%)

Active (A): n = 50; cure = 47 (94.0%)

Bayesian Approach

Prior for 
Pilot

Posterior to Pilot
Prior for Trial

Posterior to Trial

Prob. of cure, Placebo Beta(1,1)
Beta(1 + 30, 1 + [42 - 30])

= Beta(31, 13)
Beta(31 + 73, 13 + [125 - 73])

= Beta(104,65)

Prob. of cure, Active Beta(1,1)
Beta(1 + 47, 1 + [50 - 47])

= Beta(48, 4)
Beta(48 + 101, 4 + [125 - 101])

= Beta(149, 28)

Bayesian Approach

Distribution Mean Variance

0.6154 0.001393

0.8418 0.0007481

Approx. Normal 0.2264 0.002140

P
Beta(104,65)

A Beta(149,28)

  A P

sumcure difference

Cure, Active:

Cure, Placebo:

Topical Paromomycin and Gentamicin 
for Cutaneous Leishmaniasis

 ( , )X Beta a b 


( )
a

E X
a b


  2

( )
( ) ( 1)

ab
V X

a b a b

difference



Topical Paromomycin and Gentamicin 
for Cutaneous Leishmaniasis

 Active Better
0.2264

Probability distribution function for               (cure difference)  A P

0.9999995

0

The probability that antibiotics increase the chance of cure is 99.99995%

Bayesian Approach

Cumulative distribution function for                (cure difference)  A P

0.0311

Topical Paromomycin and Gentamicin 
for Cutaneous Leishmaniasis

   A P XPr( )

0.53

 Active Better
0.23 (SCID) X

0



Non-inferiority trial of EMS (S) vs UF (T). Binary outcome was a 

composite measure of treatment failure (prob(failure) = ).

Null hypothesis: EMS - UF ≥ -0.075; tested at 2.5% level, one-sided

Observed EMS - UF = 0.083; lower 95% confidence interval = 0.02

Conclusion: “usual liquids is at least as good as EMS at preventing 

treatment failures (with a 2.5% probability of error).”

Frequentist Approach

Electrolyte Maintenance Solution versus Usual Fluids in 
Children with Acute Gastroenteritis

Electrolyte Maintenance Solution versus Usual Fluids in 
Children with Acute Gastroenteritis

EMS: n = 324; failure = 81 (25.0%)

UF: n = 323; failure = 54 (16.7%)

Bayesian Approach

Prior for Trial Posterior to Trial

Prob. of failure, EMS Beta(1,1) Beta(1 + 81, 1 + [324 - 81]) = Beta(82, 244)

Prob. of failure, UF Beta(1,1) Beta(1 + 54,1 + [323 - 54]) = Beta(55, 270)



Bayesian Approach

Distribution Mean Variance

0.2515 0.000576

0.1692 0.0000431

Approx. Normal 0.0823 0.001007

EMS
Beta(82,244)

UF Beta(55,270)

  EMS UF

sumfailure difference

Failure, UL:

Failure, EMS:

Electrolyte Maintenance Solution versus Usual Fluids in 
Children with Acute Gastroenteritis

 ( , )X Beta a b 


( )
a

E X
a b


  2

( )
( ) ( 1)

ab
V X

a b a b

difference

Electrolyte Maintenance Solution versus Usual Fluids in 
Children with Acute Gastroenteritis

 UF Inferior
-0.075

Probability distribution function for                    (failure difference)  EMS UF

0

The probability that UF is inferior to EMS is 0.0000004

The probability that UF is superior to EMS is 99.53%

0.9953

0.0000004

 UF Superior



Of the 487 patient randomized to active, 160 progressed (32.9%), 

compared to 96 of the 244 patients randomized to placebo (39.3%); 

p=0.05.

Based on these results the authors rejected the null hypothesis.

Montalban et al. NEJM 2017; 376(3):209-220

Conclusion: “Ocrelizumab was associated with lower rates of clinical 

and MRI progression than placebo”

Frequentist Approach

Ocrelizumab versus Placebo in
Primary Progressive Multiple Sclerosis

Sample size based on a probability of progression on placebo of 0.43 

and a smallest clinically important difference (SCID) of 0.13.

Bayesian Approach

Ocrelizumab versus Placebo in
Primary Progressive Multiple Sclerosis

Ocrelizumab: n = 487; progression = 160 (32.9%)

Placebo: n = 244; progression = 96 (39.3%)

Prior for Trial Posterior to Trial

Prob. of prog., Ocrelizumab Beta(1,1) Beta(1 + 160, 1 + [487 - 160]) = Beta(161, 328)

Prob. of prog., Placebo Beta(1,1) Beta(1 + 96, 1 + [244 - 96]) = Beta(97, 149)



Bayesian Approach

Ocrelizumab versus Placebo in
Primary Progressive Multiple Sclerosis

Distribution Mean Variance

0.3292 0.000451

0.3943 0.000967

Approx. Normal -0.0651 0.001418

O
Beta(161, 328)

P Beta(97,149)

  O P

sumprogression difference

Prog., Placebo:

Prog., Ocreliz:

 ( , )X Beta a b 


( )
a

E X
a b


  2

( )
( ) ( 1)

ab
V X

a b a b

difference

Bayesian Approach

Ocrelizumab versus Placebo in
Primary Progressive Multiple Sclerosis

-0.0651

0. 04

0.96

Probability distribution function for                    (progression difference)  O P

 Ocreliz Better



Bayesian Approach

Ocrelizumab versus Placebo in
Primary Progressive Multiple Sclerosis

-0.13(SCID)

0.042

 Ocreliz Better

Cumulative distribution function for                (progression difference)  O P

-0.05

0.66

   O P XPr( )

X

Of the 133 patient randomized to hypothermia, 48 survived (36.1%), 

compared to 48 of the 124 patients randomized to normothermia

(38.7%); p=0.71.

Based on these results the authors stopped trial for futility.

Moler et al. NEJM 2017; 376(4):318-329.

Conclusion: “therapeutic hypothermia, as compared with therapeutic 

normothermia, did not confer a significant benefit in survival”

Frequentist Approach

Therapeutic Hypothermia after
In-Hospital Primary Cardiac Arrest in Children

Sample size based on a probability of survival on normothermia of 

0.45 and a smallest clinically important difference (SCID) of 0.15.



Bayesian Approach

Hypothermia: n = 133; survival = 48 (36.1%)

Normothermia: n = 124; survival = 48 (38.7%)

Prior for Trial Posterior to Trial

Prob. of survival, Hypo Beta(1,1) Beta(1 + 48, 1 + [133 - 48]) = Beta(49, 86)

Prob. of survival, Normo Beta(1,1) Beta(1 + 48, 1 + [124 - 48]) = Beta(49, 77)

Therapeutic Hypothermia after
In-Hospital Primary Cardiac Arrest in Children

Bayesian Approach

Distribution Mean Variance

0.3630 0.001700

0.3889 0.001871

Approx. Normal -0.02593 0.059762

H
Beta(49, 86)

N Beta(49, 77)

  H N

sumsurvival difference

Survival Normo:

Survival Hypo:

 ( , )X Beta a b 


( )
a

E X
a b


  2

( )
( ) ( 1)

ab
V X

a b a b

difference

Therapeutic Hypothermia after
In-Hospital Primary Cardiac Arrest in Children



Bayesian Approach

-0.0259

0. 33

0.67

Probability distribution function for                    (survival difference)

 Hypothermia Better

Therapeutic Hypothermia after
In-Hospital Primary Cardiac Arrest in Children

  H N

Bayesian Approach

0.15(SCID)

0.90

Cumulative distribution function for                (survival difference)

0.05

0.99

   H N XPr( )

Therapeutic Hypothermia after
In-Hospital Primary Cardiac Arrest in Children

  H N

 Hypothermia Better

X



Adaptive Design Approach

Therapeutic Hypothermia after
In-Hospital Primary Cardiac Arrest in Children

Planned an addition 140 patient per arm when trial stopped.

Number of survivors in 140 patient follows a beta-binomial distribution

Hypothermia arm: BetaBin(140, 49, 86)

Normothermia arm: BetaBin(140, 49, 77)

Simulate completed trial results and determine what proportion would

have resulted in “significant” difference in favour of Hypothermia

(“Probability of Success”)

Adaptive Design Approach

Therapeutic Hypothermia after
In-Hospital Primary Cardiac Arrest in Children

pH ~ dbeta(49, 86)
rH ~ dbin(pH, nH)  

pN ~ dbeta(49, 77)
rN ~ dbin(pN, nN)

thetaH <- (48+rH)/(133+nH)
thetaN <- (48+rN)/(124+nN)

thetaDif <- thetaH - thetaN

thetaDifSE <- sqrt( (thetaH*(1-thetaH)/(nH+133)) + (thetaN*(1-thetaN)/(nN+124)) )

z <- thetaDif / thetaDifSE
prob <- step(z-1.65)

node mean sd MC error 2.5% median 97.5% start sample
prob 0.01463 0.1201 3.636E-4 0.0 0.0 0.0 10001 90000
thetaDif -0.02629 0.04338 1.545E-4 -0.1106 -0.02689 0.05848 10001 90000
z -0.6311 1.042 0.003714 -2.655 -0.6501 1.409 10001 90000



Summary

Beta prior → Binomial sampling → Beta posterior

Beta(a,b) → r outcomes of n patients → Beta(a + r, b + [n – r])

then                        and  

For a + b sufficiently large (> 30)

Uninformative prior:

 Beta a b~ ( , )

Bayesian Approach for Binary Outcome

 

a

E
a b

( )  
  

ab
V

a b a b2
( )

( ) ( 1)

 
      

a ab
Normal

a b a b a b2
~ ,

( ) ( 1)

Beta(1,1)

Introduction

Normal prior → Normal sampling → Normal posterior

where

Uninformative prior:                                  where  

 Normal v0 0~ ( , )

Bayesian Approach for Continuous Outcome

 Vˆ ˆ, ( )  Normal v1 1~ ( , )

  
    

v
v V

0
1 1

0

ˆ

ˆ( )


 

   
v

v V

1

1
0

1 1
ˆ( )

 Normal v0~ (0, ) 
v0

1
0



Frequentist Approach

1398 women (2795 fetuses) randomized to planned caesarean delivery (T)

1406 women (2812 fetuses) randomized to planned vaginal delivery (S)

Primary outcome: death or serious neonatal morbidity

T: 2.2% versus S: 1.9%, two-sided p-value=0.49

Odds Ratio (~relative risk): 1.16, 95% confidence limits: 0.77, 1.74

Barrett et al. NEJM 2013; 369(14):1295-1305.

Conclusion: planned caesarean delivery did not significantly decrease or 
increase the risk of death or serious neonatal morbidity

Planned Caesarean vs Vaginal Delivery for Twins

Frequentist Approach

Sample size was determined to have an 80% probability of rejecting the null 

hypothesis (power) if planned caesarean section (T) halved the risk from 

4% to 2% (i.e. relative risk = 0.5), with a two-sided Type I error of 0.05.

Since a 2% risk was observed in the planned vaginal group, the question 

was raised as to whether there was sufficient power.

(i.e. Did we miss a difference?)

That is, if the risk in the planned vaginal group was only 2% to start with, 

was there sufficient sample size to have an 80% probability of rejecting the 

null hypothesis if planned caesarean section (T) halved the risk from 2% to 

1% (i.e. relative risk = 0.5)?

Feeble answer: 95% confidence interval for odds ratio: 0.77-1.74 

Planned Caesarean vs Vaginal Delivery for Twins



Consider Bayesian approach on the log(odds ratio) (= ) which is assumed 

to have a normal distribution based on the central limit theorem

Uninformative prior:                                   where

From trial, estimate of log(odds ratio):

Posterior:                                   where

Posterior distribution for the log(odds ratio):

Planned Caesarean vs Vaginal Delivery for Twins

 Normal v0~ (0, ) 
v0

1
0

   Vˆ ˆ0.1456; ( ) 0.04381

 Normal v1 1~ ( , )

     
                 

1 1
0 0

ˆ ˆ ˆ0 0ˆ ˆ ˆ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )

v V V
v vV V V

 
   

           
v V

v V V

1 1

1
0

1 1 1 ˆ0 ( )
ˆ ˆ( ) ( )

 Normal~ (0.1456,0.04381)

Bayesian Approach

Probability distribution function for     ( logOR )

Planned Caesarean vs Vaginal Delivery for Twins

0.21

 Vaginal Better Caesarean Better

log(0.5)=-0.69


  


ORPr( 1)

Pr( 0)

0.24

0



Bayesian Approach

Planned Caesarean vs Vaginal Delivery for Twins

Cumulative probability distribution function for     ( logOR)

 Vaginal Better Caesarean Better

  XPr( )

X


   


ORPr( 0.5)

Pr( 0.69)

0.000031




  


ORPr( 1)

Pr( 0)

0.24

0

The probability that planned C-section halves the risk of a bad
outcome is 0.0031%.

Frequentist Approach

Most good RCTs are performed to determine in the resulting evidence 

supports adoption of Treatment to replace Standard. That is, the 

research is addressing a one-sided question.

In general, RCTs are not done to determine which of two interventions 

is best. If neither of the interventions is standard of care, it’s very hard 

to know what to do with the results.

When performing the analysis, you need to protect yourself (i.e. limit 

the probability of) falsely rejecting the null hypothesis in favour of the 

hypothesis that Treatment is superior to Standard, because you want 

to limit the probability of adopting Treatment when it is no better than 

Standard.

One- vs. Two-tailed Tests in RCTs



One- vs. Two-tailed Tests in RCTs

You do not need to protect yourself (i.e. limit the probability of) falsely 

rejecting the null hypothesis in favour of the alternative hypothesis that 

Treatment is inferior to Standard, because the health care policy 

implications of

1. Treatment equal to Standard (null)

2. Treatment inferior to Standard (alternative)

are the same.

Namely, do not adopt Treatment

Frequentist Approach

Bayesian Statements of Inference are “One-sided”

Bayesian statement of inference are usually “one-sided” because they 

are simple and intuitive, and address relevant questions, such as:

What is the probability that early external cephalic version increases 

the probability of a non-Caesarean delivery?

What is the probability that topical Paromomycin and Gentamicin 

increases the probability of curing Cutaneous Leishmaniasis?

What is the probability that planned Caesarean section halves the risk 

of death or serious neonatal morbidity? 

Bayesian Approach



Table 1 p-values

Table 1 p-values

Table 1 p-values are used mistakenly to measure the extent of 

treatment comparison confounding

Not suited for assessing confounding of treatment comparison

A p-value is a function of observed difference and sample size

In a small trial, a big difference that might confound may not be 

statistically significant because of small sample size

On the other hand, in a large trial, a small difference may be 

statistically significant, but unlikely to confound  



Table 1 p-values

p-values can only be used to test hypotheses, i.e. to make inference 

from samples to populations

In this case the null hypothesis is that the difference in population 

means (or proportions) between two treatment arms of an RCT is 

zero

If the p-value is sufficiently small, the deductive reasoning is that the 

difference in the population means is not zero

Table 1 p-values

But that is preposterous! The two populations are created by 

randomization. How could the population means of baseline 

variables possibly differ?

If we reject the null hypothesis in this situation, we reject the validity 

of randomization and therefore the results of all RCTs



Table 1 p-values

The Bayesian prior for the mean difference for a baseline variable:

Prob(difference = 0) = 1

Prob(difference ≠ 0) = 0

Therefore the posterior is

Prob(difference = 0) = 1

Prob(difference ≠ 0) = 0

regardless of the observed data

In any case, using a Bayesian statement of inference such as, the 

probability that the mean difference is less than zero is 70%, 

reveals the fallacy immediately, because the population mean 

difference has to be zero due to randomization

5 years of recruitment: 72 eligible patients, 43 consented and enrolled

Park JR et. al. Pediatr Blood Cancer 2009; 52:44–50

Children with High risk, Stage 3 Neuroblastoma

ABMT - myeloablative chemotherapy, total-body irradiation and transplantation
of purged autologous bone marrow

CC - intensive non-myeloablative continuation chemotherapy

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒ†
‚  1-sided           ‚   Survival           ‚       ‚
‚  Fisher exact      ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰       ‚
‚  0.13              ‚      No       ‚      Yes      ‚ Total ‚
‚                    ‡ƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒ‰
‚                    ‚   n   ‚ row % ‚   n   ‚ row % ‚   N   ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒ‰
‚Treatment Arm       ‚       ‚       ‚       ‚       ‚       ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰       ‚       ‚       ‚       ‚       ‚
‚ABMT                ‚      7‚   35.0‚     13‚   65.0‚     20‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒ‰
‚CC                  ‚     13‚   56.5‚     10‚   43.5‚     23‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒŒ



Bayesian Decision Theory

In the face of uncertainty, decision theory permits optimal decision 

making, answering the following questions:

Should a new intervention be adopted for future patients?

Is more research needed?

If so, how big should the study be?

Bayesian Decision Theory
Guiding Principles

A new intervention should be adopted if no more research is needed

More research is needed if the value of the information from the 

research is greater than its cost

The size of the study should maximize the difference between the 

value and the cost



Incremental Net Benefit (Utility)

Incremental net benefit of a new intervention defined as: 
 
    ( ) e cb  

 
 e  is the increase in mean effectiveness 

 
 is the threshold value placed on a unit of effectiveness 
 
 c  is the increase in mean cost 

 

Children with High risk, Stage 3 Neuroblastoma

 e  is the difference in probability of survival 

 
 Mean = 0.196; SD = 0.1402 
 
 c  is the increase in mean cost 

 
 Mean = 50,000; SD = 50,000 (i.e. CV = 1) 
 
 = 500,000 

b(500,000) ~ N(b0,v0) = N(48,000, 6,794,410,000)

Prob. cost effective:  Prob[b(500,000) > 0]  = 0.72

ICER = Δc/Δe = 50,000/0.196 = 255,102



Value of Additional Evidence
Current Distribution of INB

INB0 48,000
(b0)

0.28
0.72

Value of Additional Evidence
Opportunity Loss Function and Current Distribution of INB

INB0 48,000
(b0)

-10,000

10,000



Value of Additional Evidence
Opportunity Loss and “Future” Distribution of INB

1b0 INB


2

0 0( , , , )b v nKReduction in patient Expected Opportunity Loss (EOL) =

< 0.28

Value of Additional Evidence
Reduction in Population Expected Opportunity Loss

Expected Value of new trial = the reduction in population EOL

k = incidence

h = time horizon

t = duration of trial

k Value of New Trial
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Expected Total Cost

k Cost of New Trial

ETC(n) = Cf + 2nCv + (kt – n)b0

where

Cf = fixed financial cost

Cv = variable financial cost per patient

(kt – n) is the number of patients who are denied intervention
(i.e. receive standard) because of the trial,
each of whom incur an expected opportunity cost of b0

 

Expected Net Gain

ENG(n) = EV(n) - ETC(n)

Let n* maximize ENG(n)

If ENG(n*) < 0 then current evidence is sufficient and optimal
decision is to adopt the intervention

If ENG(n*) > 0 then current evidence is insufficient and optimal
decision is to do a trial with 2n* patients



Children with High risk, Stage 3 Neuroblastoma

h = 20 years

k = 20 per year

accrual = 0.7k = 14 per year

follow-up = 2 years

t = (2n/14) + 2

Cf = 1,000,000

Cv = 3000

Children with High risk, Stage 3 Neuroblastoma

EV

ETC

k = 20

optimal decision is to adopt
ABMT. i.e. optimal sample
size is zero



Children with High risk, Stage 3 Neuroblastoma

Standard Approach

Type I error probability = 0.05, one-sided

Power = 0.8

SCID = 0.1, based on an NNT of 10

n/arm = 305

  (NNT )c

Children with High risk, Stage 3 Neuroblastoma

ENG(n*) > 0

ENG(n*) < 0

Threshold WTP ()
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 EV > ETC  EV < ETC



Children with High risk, Stage 3 Neuroblastoma

ENG(n*) > 0

ENG(n*) = 0

ENG(n*) < 0

Threshold WTP ()
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h)

36

Children with High risk, Stage 3 Neuroblastoma

EV

ETC

k = 300

ENG

n* = 94



Summary

Bayesian Decision Analysis has advantages in assessing the evidence in 

support of new health care interventions

Takes into account:

• current evidence

• threshold value for health outcomes

• trial costs (financial and opportunity)

• accrual rate

• duration of follow-up

• time horizon

• incidence (requiring less evidence for rare health conditions)

Allow for comparison of “return for investment” between proposed trials

For rare health conditions, trials are smaller (and cheaper), may lead to less 

expensive interventions

Summary—Bayesian Advantages

Permits simple, intuitive and relevant statements of statistical inference 
 
 
 
 
 
Provides a transparent framework for combining new information with 
current knowledge 
 
 
 
 
Facilitates decision theory for optimal decision-making and research 
design 



References—Bayesian Advantages

Spiegelhalter DJ, Abrams KR, Myles JP. (2004) Bayesian Approaches to 

Clinical Trials and Health-Care Evaluation. Wiley, Chichester.

Willan AR. (2013) Bayesian methods provide important advantages for the 

design, analysis and interpretation of clinical studies. In: Berger VW, Zhang X. 

(Eds.) Important Considerations for Clinical Trial Methodologies. Future 

Medicine, London. (eISBN 978-1-909453-31-9)


