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Topics

� Survival terminology
� Proportional hazards models

�Partial likelihood
�Checking assumptions
�Residuals
�Time dependent covariates
�Multiple failures



Measuring Survival Time
� Time is measured from

� Start of the risk period or study period
� Clinical trials

� Time of randomization
� Time of intervention

� Cohort Studies
� Enrollment into cohort?
� Age?
� Time the exposure started?
� Calendar year?

Censoring
� Censoring is the defining feature of survival analysis, 

making it distinct from other kinds of analysis.
� Some failures are not observed
� Right Censoring

� Most common kind 
� Individuals are known to not to have experienced the event 

of interest before a certain time t but it is not known if they 
have the event later or at what time the event occurs

� Reasons for censoring 
�Loss to follow-up
�End of study



Censoring (continued)

� Left Censoring – some failures/events occurred before 
observation started

� Interval censoring – time is only known to fail between two 
dates
� Diagnosis of diabetes
� Infection with HIV (between last negative and first positive 

test)
� Suppression of HIV virus

� Assumption:  Censoring occurs at random and is unrelated to 
failure process

Notation

� Outcome of interest is failure time T
� If all failures were observed, we could model f(T) directly

� C = censoring time 
� X = min(T,C) = observed “end” time
� � = I{T < C } indicates that X is a failure rather than a 

censored observation.
� The k distinct failure times from N individuals can be 

labeled as 
t(1), t(2), …. , t(k)



o
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Failure

Censored obs

Data for survival analysis

� Time 
� Censoring indicator
� Covariate(s)

ID Time Failure x

1 12 1 25
2 7 0 30
3 21 1 31
4 15 0 27
5 12 1 28
6 18 0 22
7 28 1 32



Left Truncation

� Left truncation occurs when an individual comes into 
observation some time after the natural starting point 
of the phenomenon.

� Eg.   Measuring time from HIV infection to AIDS –
some individuals are not followed from the time of 
infection but come into observation some time later.

� Want to make sure that these observations are 
excluded from the risk sets of failures which occur 
before they come under observation.
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(Ann Surg 2007;246: 734–740)

Long-term Survival and Metastatic Pattern of Pancreatic
and Periampullary Cancer After Adjuvant Chemoradiation

or Observation

Number 
Randomized

Number 
of 
Deaths



ODS html;
ODS graphics on; 
PROC LIFETEST data=BMT plots=survival 
   (atrisk=0 to 2500 by 500) maxtime=2500; 
   TIME T * Status(0); 
   STRATA Group / test=logrank;
   RUN; 
ODS graphics off;
ODS html close;

Median Survival Time

� The median survival time can be estimated as the 
time at which the survival curve reaches 50%, ie. 
where F(t) = .50

� Can’t estimate median survival time if F(t) never 
reaches .50.

� The median survival time is *not* the median of the 
survival times of individuals who failed. 



Survival Functions
� Survival Function

� Probability density function

� Hazard function
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Full Likelihood
� Full likelihood for survival analysis

� Ti ~ f(t; �) survivor function F(t; �)
� Ci ~ g(t; �) censoring function G(t; �)

� Assuming censoring is independent of failure

� If G contains no information about parameters
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Proportional Hazards Models
Cox 1972, JRSS(B)

� Hazard function

� where �0(t) is an arbitrary and unspecified baseline 
hazard function that does not depend on �

� X is a vector of explanatory variables
� � is a vector of regression coefficients associated 

with X
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Example of Baseline Hazard Function



Ratio of Hazard Functions
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is constant over time.

      is the HR associated with a 1 unit increase in zk.
ke�

For all t > 0.

� Since the baseline hazard is completely 
unspecified, we can’t use the ordinary 
likelihood to estimate �

� Cox proposed the idea of a partial likelihood to 
remove the nuisance parameter �0(t) from the 
estimating equation.



Development of the Partial Likelihood

ii
Rj j

i

Rj ji

ii

Rj ji

ii

ii

ii

ii

tR
x

x

xth
xth

xth
xth

tt
tti

tti

i

i

i

at risk at sindividualofset  theis where
exp

exp

exp)(
exp)(

)|(
)|(

) tosurvival|at event onePr(
) tosurvival|at timeevent hasIndividualPr(

)at event one|at timeevent hasIndividualPr(

0

0

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�
�

�
�

We consider the probability that individual i, with covariate vector xi,
is the one to experience the event at time ti, given that there is an event 
at time ti.
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The product of all of these conditional probabilities is called the 
partial likelihood.

We discard information about the actual 
times at which events happen.
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Ties in Event Times

� Death times are assumed to be unique when 
constructing the partial likelihood

� Ties can occur when a “truly continuous” time 
variable is not measured accurately enough

� When deaths and censoring times coincide, the 
censoring is assumed to occur immediately after all 
the deaths

� When death times coincide, the true arrangement of 
the ranks is unknown – many possible permutations

� Fortunately, permutations within different death times 
can be treated independently

Partial Likelihood when there are 
Ties in Event Times (Kalbfleisch and Prentice)

� Assume there are di events at time ti
� Let Qi be the set of all subsets of size di, which can be 

selected from Ri individuals.
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Can be very computationally intensive.



Approximations for Ties

� Breslow:

� Efron:  
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Breslow’s method is the default in SAS and is a good 
approximation when ties are not extensive.

Efron’s method is a closer approximation of the exact PL.

Estimation of Coefficients

� The Newton-Raphson method is used to find an 
estimate of 

�      is maximized to find a solution to the likelihood 
equations 
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Testing the Global Null Hypothesis
� Likelihood Ratio Test

� Wald’s Test

� Score Test 
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Comparison of Test Statistics

� Each statistic has a chi square distribution with p
degrees of freedom, where p is the number of 
covariates.

� All three tests are equivalent asymptotically.
� The likelihood ratio test is considered the most 

reliable, the Wald test the least reliable.
� The efficient score statistic is based on one 

iteration of the Newton-Raphson algorithm.



Example of Comparing Survival 
with PH Models in a Clinical Trial

� Randomized clinical trial (ACTG 320) of a new 
treatment for HIV disease compared to placebo
�577 patients on placebo
�574 patients on indinavir

� Outcome = new AIDS defining illness or death
� Randomization was stratified by CD4 count

SAS code for PH models

PROC PHREG data = data;
   MODEL time * censor (0) = covariate;
   BY covariate;
   STRATA subgroup;
   RUN;



SAS code for ACTG 320

PROC PHREG data = actg320;
   MODEL time * censor(0) = tx /risklimits;
   RUN;

Model Information

Data Set WORK.ACTG320

Dependent Variable time time

Censoring Variable censor censor

Censoring Value(s) 0

Ties Handling BRESLOW

Summary of the Number of Event and 
Censored

Values

Total Event Censored Percent
Censored

1151 96 1055 91.66

Number of Observations Read

Number of Observations Used

1151

1151



Convergence Status

Convergence criterion (GCONV=1E-8) 
satisfied.

Model Fit Statistics

Criterion Without
Covariates

With
Covariates

-2 LOG L 1316.931 1306.236

AIC 1316.931 1308.236

SBC 1316.931 1310.800

Testing Global Null Hypothesis: BETA=0
Test Chi-

Square
DF Pr > ChiS

q
Likelihood 

Ratio
10.6952 1 0.0011

Score 10.5399 1 0.0012

Wald 10.1365 1 0.0015

Hazard
Ratio

95% Hazard Ratio Confidence
Limits

Variable
Label

0.504 0.331 0.769 tx

Analysis of Maximum Likelihood Estimates
Variable DF Parameter

Estimate
Standard
Error

Chi-
Square

Pr > ChiSq

tx 1 -0.68425 0.21492 10.1365 0.0015



Unadjusted Adjusted

Covariates
Hazards Ratio 

(95% CI) p value
Hazards Ratio 

(95% CI) p value
Treatment 0.50 (.33,.769) 0.0015 0.49 (.32,.75) 0.001
CD4 > 50 cells/mm3 0.26 (.16, .40) <0.0001 0.25 (.16, .39) <0.0001
Age (per year) 1.02 (.999, 1.04) 0.06
Age (per 10 years) 1.23  (0.99, 1.52) 0.06

Age > 50 years 1.86 (1.13, 3.07) 0.015 2.11 (1.27, 3.48) 0.004

Hemophiliac 1.02 (0.32, 3.22) 0.97
Years of prior ZDV 0.97 (0.89, 1.06) 0.51

Proportional Hazard Models

Interpretation of Model Output

� The hazard ratio associated with treatment is 0.49.   
Patients receiving indinavir are 0.49 times as likely to 
progress to an AIDS defining event or death as 
patients receiving placebo.  

� Patients with CD4 counts > 50 are 0.25 times as 
likely to progress to an AIDS defining event or death 
as patients with CD4 counts < 50.

� Patients more than 50 years old were 2.11 times as 
likely to progress to an AIDS defining event or death.



Checking Assumptions of the 
Proportional Hazards Model

� The key assumption of this model is 
proportionality

� Ie. the ratio of hazards for any two subjects i and j
is independent of time
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KM curves should not cross

Logan et al. Biometrics 2008; 64(3): 733-740.



Checking PH Assumptions
� For covariates with a small number of levels, 

plots of log[-log(Fi(t))] vs log t are useful.
� The plots should be roughly parallel if the proportional 

hazards model is appropriate

])(exp[])exp[)Pr()(
00

dsesdsstTtF x
tt

��� �� 
������Recall

dsestF x
t

�� )()(log
0
� 
��

xdsstF
t

�� ��� � 
 )(log)](loglog[
0



Checking PH assumptions with 
residuals

� If the covariate has many levels or is continuous, KM 
plots and log(-log(F(t)) plots are not as useful.

� Plots of the Schoenfeld residuals can be used to assess 
departure from the PH assumption. 
� cumulative sum of Schoenfeld residuals
� weighted Schoenfeld residuals

� References
� Schoenfeld D. Partial residuals for the proportional hazards model.  

Biometrika1982;69:239-41

� Therneau & Grambsch. Modeling Survival Data.  2000.  Ch 6.

Cumulative Sum of 
Schoenfeld Residuals

� One residual for each covariate for each subject
� The residual is the difference between the observed value 

of x and its conditional expectation
� Only defined at observed event times.
� Plot of cumulative sum of residuals against time or 

log time should be a random walk starting and ending 
at zero and centered around zero.

� Plots can be hard to interpret.



Weighted Schoenfeld Residuals

� If PH doesn’t hold, an alternative is 

� If PH holds, then �j(t) vs t will be a horizontal line
� It has been shown that 

� where s*kj = scaled Schoenfeld residual 
� So, a plot of the scaled Schoenfeld residuals vs time 

should have a zero slope if the PH assumption holds. 
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Outputting Residuals in SAS
ODS html;
ODS graphics on;
PROC PHREG;
MODEL TIME * CENSOR = age tumorsize;
OUTPUT OUT = residuals 
   RESDEV = deviance
   RESMART = martingale 
   RESSCH = schoenfeld
   RESSCO = score 
  WTRESSCH = wtschoenfeld_age wtschoenfeld_tumor; 
RUN;
ODS graphics off;
ODS html close;



ods html;
ods graphics on;
proc gplot data=residuals;
   title 'Weighted Schoenfeld Residuals for Age';
   plot wtschoenfeld_age*timemin;
   label timemin = 'Time';
run;
ods graphics off;
ods html close;



� Plot is indicative of non proportional hazards
� Next step 

� Fit an interaction of time and tumor size
� In this case, the interaction is significant 

� How to proceed?
� It may not matter
� Should consider the size of the variation in residuals 

relative to the estimated coefficient 

�
�



When PH assumptions don’t hold:

� Can include an interaction term with time and 
the covariate

� Can use a parametric model
� Use a time-dependent coefficient

Check functional form of covariates

� For continuous variables, a linear relationship may or 
may not be the best fit

� It may be better to: 
� create categories for the variable 
� transform with logarithms, square root, etc
� model as a quadratic 

� Plot martingale residuals vs continuous covariates to 
check functional form of covariates



Residual Plots

� Plot martingale residuals vs continuous 
covariates
�To check functional form of covariates

� Plot deviance residuals vs observation number, 
to check for outliers.

Martingale Residuals

� Mi(t) = Martingale residual at time �i is the difference 
over [0, �i] between the observed and expected 
number of events.

� The Martingale residual for the ith subject is the sum 
of the residuals over all time periods; Mi = Mi(��
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Deviance Residuals

� A transformation of the martingale residuals to 
achieve a more symmetric distribution.

� Symmetrically distributed about zero.
� Negative for observations with longer survival times 

than expected and positive for observations with 
shorter survival than expected

� Extreme values may indicate an outlier
� Unusual patterns may suggest that the model is not a 

good fit to the data.

Model Assessment

� “ASSESS” statement in PROC PHREG
� Uses cumulative sums of martingale residuals over 

follow-up times or covariate values
� Can check

�Functional form of a covariate
�PH assumption for each covariate



Model Assessment in SAS

ODS html;
ODS graphics on;
PROC PHREG;
MODEL TIME * CENSOR = AGE;
ASSESS VAR = (age) PH / crpanel resample seed=2011;
RUN;

ODS graphics off;
ODS html close;

“Resample” gives the p value.   Setting the seed makes sure you get the 
same p value each time.





Time dependent Covariates
� External covariates: not directly related to failure mechanism

� Time of year
� Air pollutants
� Age

� Internal covariates: generated by the individual
� Blood pressure
� CD4 cell count
� Blood pressure

� Fundamental assumption for time-dependent covariates is that 
the change in exposure occurs randomly.



o

o

Follow-up Time

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Failure

Censored obs

Patient 7

Left truncated

X

X

X

X X

X X

XX

X

X

X

X

X X

X

X X

X

X X

X

X

Modeling External time dependent 
Covariates in SAS

Can create time dependent covariates directly in the 
PROC statement for simple situations:

PROC PHREG data= Heart; 
   MODEL Time*Status(0)= XStatus Acc_Age; 
   IF (WaitTime = . or Time < WaitTime) then 

XStatus=0.; 
   ELSE XStatus= 1.0; 
   RUN;



Data set up for time dependent 
covariates (counting process style)
� Each individual has one row of data for each 

different value of their time-dependent 
covariate

� For each period, enter the start and stop date of 
that period, the value of the covariate during 
that period and an indicator of whether or not 
the person experienced the event at the end of 
the period.

Data Setup for Time dependent Covariates

ID Start Stop Event CD4 gender
1 0 10 0 250 M
1 10 15 0 187 M
1 15 20 1 123 M
2 0 6 0 300 F
2 6 9 0 281 F
2 9 13 0 260 F
2 13 14 1 200 F
4 0 8 1 105 M
3 0 12 0 86 F



Smoking and Survival with Heart 
Disease

� Problem: 
� Individuals stop smoking just before death
� Smoking appears to improve survival!
� In fact – the converse is likely true, but measures of severe illness 

(hospitalization or heart failure, for example), lead to smoking 
cessation

� Smoking status is correlated with severity of illness
� Covariate should not be on causal pathway
� Solutions

� Time lagged covariates
� % of follow-up where individual smoked

Multivariate Failure Time

� Multivariate failure time data arise when
� Individuals under study can experience multiple 

events of the same type such as heart attacks or 
recurrence of disease during the study period 
(recurrent events) or

�Individuals under study can experience multiple 
events of different types (competing risks)

� Individuals under study are in natural clusters, 
such as members of the same family, etc. (clustered 
failure times).



Determining Times to Virologic Suppression
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Strategies to Handle Multiple failure 
times per person

� Analyze only the time to the first failure 
� Loss of information

� Model time between different events separately
� Model correlation between events within subjects by 

introducing a random effect or frailty
� Marginal model – no assumptions about the nature of 

within subject dependence



Kinds of models
� Marginal model (Wei, Lin, Weissfeld (1989)
� Intensity model (Andersen and Gill, 1982)
� Gap time model (Prentice, Williams and Peterson, 

1981)
� Proportional rates/means model (Lin, Wei, Yang and 

Ying (2000), Lawless and Nadeau (1995), Pepe and 
Cai (1993))

Kelly & Lim Statistics in Medicine, 2000; 19:13-33.

Risk Intervals

� Gap time 
�resets the clock to zero after each event

� Total time 
�counts time from baseline for each event

� Counting process 
�Measures both start and stop times from baseline



Baseline Hazard

� Common baseline hazard
� Event-specific baseline hazard



Risk Set

� Unrestricted
�All subjects’ risk intervals contribute to the risk set 

for each event, regardless of how many events they 
have had. 

� Restricted
�Only the kth events are included in the kth risk set

� Semi-restricted

Within-Subject correlation

� Conditional
�Assumes the current event is unaffected by earlier 

events in that subject
� Marginal

�Assumes that events within a subject are 
independent

� Random effects (aka frailty model) 



Marginal Cox Models for Multiple 
Events Data 

� Each event is considered as a separate process.
� N subjects, each subject can experience up to K events.
� Zki(.) is the covariate associated with the kth event for the ith

subject.

� Where          is the event specific baseline hazard function for 
the kth event and     is the vector of regression coefficients for 
the kth event.

� Marginal models do not condition on the time since the study 
start or the previous inter-event times.
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The input data set should contain 
� an ID variable for identifying the subject so that all observations 

of the same subject have the same ID value 
� an event number variable to index the multiple events. For 

example, Event = 1 for the first event, Event = 2 for the second 
event, and so on. 

� a Time variable to represent the observed time from some time 
origin for the event. For recurrence events data, it is the time 
from the study entry to each recurrence. 

� a Status variable to indicate whether the Time value is a censored 
or uncensored time. For example, Status=1 indicates an 
uncensored time and Status=0 indicates a censored time. 

� covariates:   X1, X2, .... 



SAS Code to fit marginal model
proc phreg covs(aggregate); 
   model Time*Status(0)=Z11 Z12 Z13 Z21 Z22 Z23; 
   strata Enum; 
   id ID; 
   Z11= Z1 * (Enum=1); 
   Z12= Z1 * (Enum=2); 
   Z13= Z1 * (Enum=3); 
   Z21= Z2 * (Enum=1); 
   Z22= Z2 * (Enum=2); 
   Z23= Z2 * (Enum=3); 
run; 

Intensity Model (Andersen and Gill, 1982)

� Each subject can experience multiple events of the 
same type.

� N(t) is the number of events a subject experiences 
over the interval [0,t]

� The intensity model is

� Data for each subject needs to be entered in the 
counting process style, with a start time, stop time and 
censoring indicator for each event
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Data for Andersen Gill Model

ID Start Stop Censoring Age
1 0 52 0 41
2 0 16 1 43
2 16 35 1 43
2 35 49 0 43
3 0 13 1 49
4 0 26 1 35
4 26 39 1 45

SAS code for Andersen Gill model

PROC PHREG covs(aggregate); 
MODEL (Tstart,Tstop)*Status(0)=Trt Age; 
id ID; 



Probability of Unsuppressed Viral Load by Number of Viral 
Load Breakthrough

Summary of the Number of Censored and Uncensored Values

Stratum numsuppress Total Failed Censored Percent
Censored

1 1 989 640 349 35.29

2 2 357 262 95 26.61

3 3 142 110 32 22.54

4 4 56 39 17 30.36

5 5 23 13 10 43.48

Total 1567 1064 503 32.10



Model Event # Covariates
Hazards Ratio 

(95% CI) P-value
Andersen-

Gill - Cal Year > 2003 0.44 (.38,.50) <0.0001

Marginal 1 Cal Year > 2003 0.23 (.19, .28) <0.0001
2 Cal Year > 2003 0.39 (.31, .50) <.0001

3 Cal Year > 2003 0.78 (.55, 1.10) .16

4 Cal Year > 2003 0.53 (.31, .90) .02

5 Cal Year > 2003 0.46 (.20, 1.05) 0.07

Recurrent Event Proportional Hazard 
Models

Assignment

� Data and assignment on course website
� Email to me by Oct 27th

� No more than 20 pages
� 5 of 25 marks are for “writing and 

conciseness”.


