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Abstract 

Background/Aims 

The use of pilot studies to help inform the design of randomized controlled trials (RCTs) has 

increased significantly over the last couple of decades. A pilot study can provide estimates of 

feasibility parameters, such as the recruitment, compliance and follow-up probabilities. The use 

of frequentists confidence intervals of these estimates fails to provide a meaningful measure of 

the uncertainty as it pertains to the design of the associated RCT. The objective of this paper is to 

introduce Bayesian methods for the analysis of pilot studies for determining the feasibility of an 

associated RCT. 

Methods 

An example from the literature is used to illustrate the advantages of a Bayesian approach for 

accounting for the uncertainty in pilot study results when assessing the feasibility of an 

associated RCT. Vague Beta distributed priors for the feasibility parameters are used. Based on 

the results from a feasibility study, simulation methods are used to determine the expected power 

of specified recruitment strategies for an associated RCT. 

Results 

The vague priors used for the feasibility parameters are demonstrated to be considerably robust. 

Beta distributed posteriors for the feasibility parameters lead to Beta-binomial predictive 

distributions for an associated RCT regarding the number of patients randomized, the number of 

patients that are compliant and the number of patients that complete follow-up. Ignoring the 

uncertainty in pilot study results can lead to inadequate power for an associated RCT.  
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Conclusions 

Applying Bayesian methods to pilot studies results provides direct inference about the feasibility 

parameters and quantifies the uncertainty regarding the feasibility of an associated RCT in an 

intuitive and meaningful way. Furthermore, Bayesian methods can identify recruitment strategies 

that yield the desired power for an associated RCT. 

 

Key words 

Pilot studies, Bayesian methods, Recruitment feasibility, Compliance feasibility, Follow-up 

feasibility  
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Background 

 

The use of pilot studies to inform the design of randomized controlled trials (RCTs) has grown 

substantially over the past couple of decades. In 1991 there were less than 3000 publications 

indexed in PubMed with the term “feasibility” or “pilot” in the title; in 2018 there were over 

26,000. An extension to the CONSORT statement for randomized pilot and feasibility trials was 

published in 20161, and a new journal, entitled Pilot and Feasibility Studies, began publishing in 

2015. In spite of this growing interest, few, if any, innovative methods for assessing the evidence 

provided by a pilot studies have been developed, and an examination of publications for the first 

four years of Pilot and Feasibility Studies reveal none. It is not clear how frequentists point 

estimates and associated confidence intervals from pilot studies inform the design of the 

associated RCTs. In this paper a Bayesian approach is proposed that uses the evidence from pilot 

studies to make direct inference regarding the design of associated RCTs in an intuitive and 

meaningful manner. 

 

A pilot randomized controlled trial (pRCT), whether internal or external, can be employed to 

examine the feasibility of performing the associated “main” trial (mRCT)2. The following 

performance parameters, among others, might be of interest: (i) the probability that an eligible 

patient consents and is randomized (randomization probability, denoted Pr), (ii) the probability 

that a randomized patient receives the assigned intervention (compliance probability, denoted 

Pc), and (iii) the probability that a randomized patient is evaluated for the primary outcome 

(evaluated probability, denoted Pe). The reports of pRCTs often provide the observed proportions 

for these feasibility performance parameters which are sometimes accompanied by associated 
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confidence intervals.1,3,4 Since proportions are point estimates, they don’t convey the associated 

uncertainty, and although the confidence intervals provide an expression of the uncertainty in the 

frequentist framework, they are difficult to interpret and usually include values that imply the 

associated mRCT is not feasible. 

 

A working example is provided in the next section, followed by the introduction of a Bayesian 

model as applied to pRCTs. The model is then illustrated using the working example, followed 

by an examination of the feasibility of the associated mRCT with regard to randomization and 

follow-up. 

 

Methods 

 

Working Example 

 

As an example, consider the report of the pRCT by Morone et al.5 The authors report that of the 

77 eligible patients approached, 37 (48.1%) were recruited and randomized. A specific goal was 

not given. They further report that 30 of the 37 randomized patients (81.1%) completed the 

eight-week follow-up period and were evaluated for the primary outcome. Again, no specific 

goal was given. In addition, there were no measures of the uncertainty associated with the 

observed proportions provided. Using Wilson’s score methods,6 the 95% confidence interval for 

Pr, based on the data from this pRCT, is 37.3% to 59.0%. A similar confidence interval for Pe is 

65.8% to 90.5%. The interpretation of confidence interval for Pr is as follows: if the pRCT was 

repeated in an attempt to recruit and randomize 77 eligible patients many, many, many times 
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then in the limit, the proportion of such confidence intervals from the repetitions that include Pr 

is 95%. The interpretation of the confidence interval for the associated mRCT is unclear. In this 

paper we argue that when using the data from a pRCT, a Bayesian approach can make direct 

inference regarding the feasibility parameters for the associated mRCT and can quantify the 

uncertainty in a simple, intuitive and relevant manor.  

 

The Bayesian Approach 

 

A Bayesian approach provides direct inference because it allows the uncertainty regarding a 

parameter of interest, such as Pr, to be represented by a probability distribution by treating the 

parameter as a random variable. Typically, a beta distribution is used if the parameter of interest 

is a probability. The beta distribution is defined on the interval [0,1] and is parameterized by two 

positive shape parameters. More importantly, the beta distribution is conjugate with binomial 

sampling, typically used to investigate probabilities. Meaning that, if the prior distribution for a 

probability is beta then following binomial sampling, the posterior distribution is beta. 

Specifically, if the prior distribution for the probability of a success is Beta(a, b), and if r success 

are observed in n attempts, then the posterior distribution is Beta(α, β), where α = a + r,  and β = 

b + n - r. The posterior distribution can then be used to characterize the uncertainty when making 

direct inference on the probability of success with statements such as the probability that the 

probability of success is greater or equal to x is y. Furthermore, a predictive distribution, in this 

case a beta-binomial, can be used to determine the probability of observing a given number of 

successes in a future trial of a fixed number of attempts. 
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Using the example from Morone et al.5 the posterior distribution for Pr is Beta(a + 37,  b + 40) , 

where the prior distribution is Beta(a, b). If we assume a vague flat distribution for the prior (i.e. 

Beta(1, 1)) then the posterior distribution is Beta(38, 41). For the sake of argument, assume that 

the investigators believed that the associated mRCT is feasible if Pr ≥ 0.5. Based on the evidence 

from the pRCT and assuming a flat prior, the probability that Pr ≥ 0.5 is 36.7%, and the 

probability that it is greater than or equal to 0.4 is 92.6%. 

 

If X ~ Beta(1, 1) then Prob(α ≤ X ≤ β) = β – α. As a consequence, using the prior Beta(1, 1) 

implies a 20% prior belief that Pr is greater than 0.8, a value those involved in patient 

recruitment might consider a little optimistic. On-the-other-hand, it implies a 20% prior belief 

that Pr is less than 0.2, perhaps overly pessimistic. As an alternative, investigators might consider 

other sufficiently vague priors with less “fat” tails. Possibilities are Beta(a, a), where a is 

relatively small, say a = 4. An assumed prior of Beta(4, 4) has mean of 0.5, as does Beta(1, 1), 

and probability of being greater than 0.8 (or less than 0.2) equal to 3.3%, numbers that are 

perhaps more in-line with prior expectations. The posterior for Pr for our example then becomes 

Beta(41, 44). The probability that Pr ≥ 0.5 is now 37.2%, and the probability that it is ≥ 0.4 is 

93.7%. By comparing these values to those for the flat Beta(1, 1) prior illustrates, at least in this 

example, that the posterior is fairly robust against choices for sufficiently vague priors. Further 

illustration of the robustness can be seen in Figure 1 in which the probability that Pr ≥ 0.4, 0.45 

and 0.5 are given for various priors defined by its expected value and the sum of a + b. The 

probability that Pr ≥ 0.4 ranges from 92.0%, (mean = 0.4, a + b = 1) to 94.0% (mean = 0.5, a + b 

= 10), demonstrating a reasonable level of robustness. The insensitivity of the posterior 
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distribution might be expected given that the sample size of the pilot is 77 and the effective 

sample size of the prior distribution ranges from 2 to 10. 

 

Examining the Randomization Feasibility of the Main RCT 

 

The real question is: what does the posterior distribution for Pr from the pRCT tell the 

investigators about the feasibility of randomizing the required number of patients in the 

associated mRCT? Assuming the uncertainty regarding Pr, based on the data from the pRCT, 

follows a beta distribution then the number of patients randomized (k) in the mRCT, given a 

fixed number of eligible patients (m), follows a beta-binomial distribution. That is, if the 

posterior from the pRCT for the randomization probability is Beta(α, β) then k ~ Beta-

binomial(m, α, β). This is the predictive distribution of the observed number of patients 

randomized in the future mRCT. The implication of this is illustrated in Figure 2. Continuing 

with the Morone et al.5 example and using the same prior distributions given in Figure 1, the 

number of eligible patients that must be approached to have a 90% probability of randomizing 

100, 500 or 1000 patients is provided. For example, suppose the investigators wanted to 

randomize a total of 500 patients in the mRCT. Choosing the flat prior Beta(1, 1), they would 

need to approach 1228 eligible patients to have a 90% probability of achieving their goal. The 

robustness of the choice of priors is further illustrated in Figure 2; with Beta(4, 6) 

(i.e. mean = 0.4, a + b = 10) as the prior, they would need to approach 1246. To have a 95% 

(99%) probability of achieving the recruitment goal of 500, the respective numbers are 1293 

(1431) for the prior Beta(1, 1) and 1311 (1455) for the prior Beta(4, 6). 
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In their pRCT Morone et al.5 managed to randomize 48.1% of eligible patients. This could lead 

them to believe that for the associated mRCT they need only approach 1040 (i.e. 500/0.481) 

eligible patient to meet a randomization goal of 500 (herein after referred to the naïve method). 

Such thinking, however, ignores the uncertainty in the estimate of Pr from the pRCT and the 

uncertainty regarding the observed proportion of eligible patients randomized in the mRCT, 

given Pr. If the investigators merely approached 1040 eligible patients, the probability of 

achieving their goal is only 50.4%, assuming the prior Beta(1, 1), and only a 43.4%, assuming 

the prior Beta(4, 6). This may explain why many trials fail to meet their recruitment goals. From 

the analysis above, to be almost certain (i.e. 99%) to meet the goal of 500, over 1400 eligible 

patient need to be approached.  

 

Examining the Follow-up Feasibility of the Main RCT 

 

A similar Bayesian approach can be taken to assess the feasibility with respect to other 

performance measures, such as Pc and Pe. Recall that Morone et al.5 reported that of the 37 

patients randomized, 30 (81.1%) were evaluated for the primary outcome. Choosing the flat 

Beta(1, 1) prior would be too pessimistic, since it assumes that the probability that Pe  ≥ 0.75 is 

only 25%. For illustration consider Beta(2.2, 1.1) as the prior. It has a mean of 0.667 and the 

probability that Pe  ≥ 0.75 is 50.7% and that it is ≥ 0.9 is 33.2%. This seems not overly-optimistic 

based on experiences with many other trials, while still reasonable vague. The associated 

posterior becomes Beta(32.2, 8.1). In Figure 3, one minus the cumulative distributions (1 – CDF) 

for two posteriors are shown: Beta(32.2, 8.1) and Beta(31, 8) (i.e. based on a prior of Beta(1, 1)). 
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The robustness of the choice of priors is again illustrated; the probability that Pe ≥ 0.75 (0.8) is 

79.1% (52.5%) for Beta(32.1, 8.1) and 76.9% (50.0%) for Beta(31, 8). 

 

Suppose for the mRCT the investigators want 500 patients evaluated for the primary outcome in 

total (i.e. followed for the complete eight-week follow-up period). Suppose further they feel for 

the sake of credibility they must limit lost-to-follow-up to 20%. As a consequence they recruit 

625 (=500/0.8) patients. Based on the information regarding Pe from the pRCT, and using the 

predictive Beta-binomial distribution as before for the number of randomized patients that are 

evaluated, the probability that 500 of the 650 patients have complete follow-up is 70.3%, for the 

prior Beta(2.2, 1.1), and 67.8%, for the prior Beta(1, 1). 

 

Results 

 

Using the Results of a pRCT to Inform the Design of the Associated mRCT 

 

Using the Bayesian methods given above a procedure for employing the results of a pRCT to 

inform the design of the associated mRCT is provided in this section. By incorporating the 

uncertainty associated with the results of the pRCT, the procedure estimates the power of 

potential recruitment strategies for the mRCT. This allows the investigators to choose the strategy 

that most efficiently achieves the desired power. A recruitment strategy consists of Na, the 

maximum number of eligible patients to be approached, and Nr < Na, the maximum number of 

patients randomized. Consider the situation faced by the investigators who wish to plan a mRCT 

informed by the pilot data from Morone et al.5 Suppose they chose Beta(1, 1) for the prior for Pr, 
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and Beta(2.2, 1.1 ) for the prior for Pe, leading to the respective posteriors Beta(38, 41) and 

Beta(32.2, 8.1). Recognizing that the actually number of randomized and evaluated patients are 

random variables with Beta-binomial predictive distributions, the procedure uses simulations to 

determine the expected power of a given strategy defined by Na and Nr. Suppose the type I error 

probability for the mRCT is set to α, using a two-sided test of the null hypothesis. Let δ equal the 

smallest clinically important difference, expressed in standard deviations. The simulations are 

performed using the following steps: 

Determine nr = min(Beta-binomial(Na, 38, 41), Nr)  (the number randomized) 

Generate me ~ Beta-binomial(nr, 32.2, 8.1)   (the number evaluated) 

Determine power = ( )(1 2)2em z −αΦ δ − , where Φ  is the CDF and (1 2)z −α  is the 

1 2−α  cut-point for the standard normal random variable. 

The average of power over the simulations is the expected power of approaching at most Na 

eligible patients and randomizing at most Nr of them. 

 

Returning to the example, suppose α = 0.05, δ = 0.15 and the desired power is 80%, then the 

total sample size requirement is 
2

(0.975) (0.8)2( ) 1395z z + δ =  . The naïve approach would be to 

randomize 1396/0.811 = 1720 and approach 1722/0.481 = 3576. (Recall that 0.481 was the 

proportion of eligible patients randomized, and 0.811 was the proportion of randomized patients 

evaluated.) The resulting expected power is 0.771. To ensure sufficient power the investigators 

would need to increase the maximum number of eligible patients approached and randomized. 

For example, if the maximum number of eligible patients approached is set to 4000 and the 

maximum number of patients randomized is set to 1800, the expected power is 0.8. 
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Alternatively, if the numbers are set to 3800 and 1900, respectively, the expected power is also 

0.8. Since there are many pairs of Na and Nr that provide the required expected power, the 

investigators choice would need to consider budgetary and patient availability constraints. 

 

Figure 4 allows examination of the loss of expected power due to applying the naïve method. 

The results are shown as a function of the number of eligible patients approached in the pilot 

study, the proportion of those that are randomized and the proportion of randomized patients that 

are evaluated. The expected power ranges from 72.1% (for 25 eligible patients approached, with 

40% randomized and 95% evaluated) to 78.1% (for 100 eligible patients approached, with 60% 

randomized and 75% evaluated). In general, since the precision of the parameter estimators 

increases with the number approached and the proportion randomized, so does the expected 

power. The ranges in Figure 4 of the number approached and the proportion randomized and 

evaluated span those seen in most pilot studies, and this analysis reveals a small to moderate lost 

in expected power from using the naïve method. Nonetheless, the loss of expected power can be 

avoided by choosing a recruitment strategy that provides, in simulations, the required power. 

 

Conclusions 

 

Pilot studies can be an integral part of the planning RCTs and are becoming increasingly popular. 

They can be used for estimating, among other parameters, the randomization, compliance and 

evaluation probabilities. However, ignoring the uncertainty regarding these estimates can lead to 

underpowered RCTs. To address this issue we propose Bayesian methods for the analysis of pilot 

studies. While Bayesian methods have become mainstream in many areas of health research,7,8 
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their use in pilot studies is not common. The proposed methods provide direct inference 

regarding the feasibility of the associated main RCT in a simple, intuitive and relevant manner. 

Data from a published pilot study are used to demonstrate the methods, with particular emphasis 

on assessing randomization and evaluation feasibility. 

 

For this example at least, the robustness of the choice of priors is demonstrated. Using beta priors 

and binomial sampling for probability parameters in the pilot study, beta-binomial predictive 

distributions can be used to determine the probability of randomizing and evaluating the required 

number of patients in the main RCT. Further the Bayesian approach allows the investigators, 

using the data from a pilot study, to determine the expected power of their patient recruitment 

strategy for the main RCT.  

 

Issues remain, however. Vague priors were used in the example presented here and were 

illustrated to be reasonably robust, but in any specific application, the robustness of the choice of 

priors needs to be examined carefully. Although prior elicitation is beyond the scope of this 

paper, it is important to note that some sensitivity analysis in the hyper-parameters in Figure 1 

might be useful in providing a numerical context, and quantitative feedback, to facilitate eliciting 

beta priors reflecting an investigator’s beliefs about Prob(Pr > 0.50) and similar feasibility 

probabilities. Furthermore, future research regarding the use of more informative priors based on 

previous similar, or even unrelated, pilot studies needs to be examined. Where appropriate, the 

use of such priors would lead to a more precise assessment of the feasibility of future RCTs. 

While we acknowledge that determining the sample size for a feasibility study is beyond the 

scope of this paper, we refer the reader to Cocks and Torgerson9 for further reading.   
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Figure 1. The probability (%) that the posterior for the randomization probability equals or 
exceeds the respective column heading, as a function of the prior, defined by the sum of a and b 
and the expected value. 
 

 Expected value for prior distribution 

0.5 0.45 0.4 

a + b a b 0.4 0.5 a b 0.4 0.5 a b 0.4 0.5 

2 1 1 92.6 36.7 0.9 1.1 92.3 35.9 0.8 1.2 92.0 35.0 

4 2 2 93.0 36.9 1.8 2.2 92.4 35.2 1.6 2.4 91.7 33.6 

6 3 3 93.4 37.0 2.7 3.3 92.5 34.6 2.4 3.6 91.5 32.2 

8 4 4 93.7 37.2 3.6 4.4 92.5 33.9 3.2 4.8 91.2 30.8 

10 5 5 94.0 37.3 4.5 5.5 92.6 33.3 4 6 91.0 29.5 

 



Figure 2. Each number in boldface is the number of eligible patients that need to be approached 
to have a 90% probability of randomizing the number of patients indicated in the column 
heading, as a function of the prior, defined by the sum of a and b and the expected value. 

Expected value for prior distribution 

0.5 0.45 0.4 

a + b 100 500 1000 100 500 1000 100 500 1000 

2 250 1228 2450 252 1230 2452 252 1234 2464 

4 249 1224 2443 252 1230 2452 252 1238 2468 

6 248 1220 2435 252 1230 2452 254 1242 2474 

8 247 1217 2427 250 1230 2452 254 1244 2480 

10 247 1213 2420 250 1230 2452 254 1246 2486 



Figure 3. One – CDF of the posterior distribution for the follow-up probability based on two different priors.



Figure 4. Power (%) of applying the naïve method, broken down by the number of eligible 
patients approached in the pilot study, the proportion of those that were randomized and the 
proportion of randomized patients that were evaluated. The goal of 80% power was based on a 
two-sided, 5%-level test of the null hypothesis and a smallest clinically important difference of 
0.15 standard deviations. 

Number of 
eligible patients 

approached 

Proportion of 
eligible patients 

randomized 

Proportion of randomized patients evaluated 

0.75 0.85 0.95 

25 

0.4 73.5 72.7 72.1 

0.5 74.7 74.2 73.8 

0.6 75.5 74.7 74.4 

50 

0.4 76.0 75.5 75.2 

0.5 76.5 76.3 75.9 

0.6 77.0 76.7 76.5 

75 

0.4 76.8 76.5 76.2 

0.5 77.3 77.2 77.0 

0.6 77.7 77.5 77.4 

100 

0.4 77.3 77.1 76.9 

0.5 77.8 77.6 77.4 

0.6 78.1 78.0 77.8 
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